Abstract

In this paper, bifunctional catalysts consisting of perovskite LaCo0.8Fe0.2O3 nanowires (LCFO NWs) with reduced graphene oxide (rGO) sheets were prepared for use in lithium-oxygen (Li-O2) battery cathodes. The prepared LCFO@rGO composite was explored as a cathode catalyst for Li-O2 batteries, resulting in an outstanding discharge capacity (ca. 7088.2 mAh g-1) at the first cycle. Moreover, a high stability of the O2-cathode with the LCFO@rGO catalyst was achieved over 56 cycles under the capacity limit of 500 mAh g-1 with a rate of 200 mA g-1, as compared to the Ketjenblack carbon and LCFO NWs. The enhanced electrochemical performance suggests that these hybrid composites of perovskite LCFO NWs with rGO nanosheets could be a perspective bifunctional catalyst for the cathode oxygen reduction and oxygen evolution reactions in the development of next-generation Li-O2 battery cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.