Abstract

A novel series of homometallic and heterometallic lanthanide (Eu(3+)(Tb(3+))-Gd(3+)) hybrid silica microspheres (EDTA-(Eu(Tb)-Gd)-TTA-SiO(2)) are synthesized with 2-thenoyltrifluoroacetone (TTA) functionalized silane and ethylenediaminetetraacetic acid (EDTA) by sol-gel process, whose physical characterization are carried out and especially the luminescence and the magnetic resonance imaging (MRI) contrast agent properties are discussed. These hybrids present uniform silica microsphere morphology with particle size of 1 μm. Comparing to the homometallic hybrid silica microsphere EDTA-Ln-TTA-SiO(2) without Gd(3+) ion, the heterometallic hybrid silica microspheres EDTA-Eu-Gd-TTA-SiO(2) exhibit stronger luminescent intensity, longer lifetime and higher luminescent quantum efficiency, which is due to the fact that inert ion Gd(3+) can enhance the luminescence of the Eu(3+) or Tb(3+) within the hybrid system. In addition, the MRI relaxivity of the heterometallic lanthanide hybrid silica microspheres in water is assessed, showing a lower T1 relaxation rate than homometallic gadolinium hybrid one (EDTA-Gd-TTA-SiO(2)). Both of them show higher T1 relaxation rate than the conventional Gd chelate of diethylenetriamine pentaacetic acid. These bifunctional hybrid materials exhibit both luminescent and MRI magnetic contrast agent properties, whose further investigation can be expected to have potential application in practical fields such as optical storage and sensors, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.