Abstract
A theory of biexcitons (formed from spatially separated electron and holes) in nanosystems that consist of zinc-selenide quantum dots synthesized in borosilicate glassy matrices is developed. The dependences of the total energy and the binding energy of the singlet ground biexciton state in such a system on the spacing between the quantum-dot surfaces and the quantum-dot radius are derived by the variational method. It is shown that biexciton formation is of the threshold character and possible in nanosystems, in which the spacing between the quantum-dot surfaces is larger than a certain critical spacing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.