Abstract

We investigate theoretically under what conditions a stable and high-fidelity preparation of the biexciton state in a quantum dot can be realized by means of adiabatic rapid passage in the presence of acoustic phonon coupling. Our analysis is based on a numerically complete real-time path-integral approach and comprises two different schemes of optical driving using frequency-swept (chirped) pulses. We show that depending on the size of the biexciton binding energy, resonant two-photon excitations or two-color schemes can be favorable. It is demonstrated that the carrier-phonon interaction strongly affects the efficiency of both protocols and that a robust preparation of the biexciton is restricted to positive chirps and low temperatures. A considerable increase of the biexciton yield can be achieved realizing temperatures below 4 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call