Abstract

The midbrain periaqueductal gray (PAG), particularly its ventrolateral column (vlPAG), is part of a key descending pathway that modulates nociception, fear and anxiety behaviors in both humans and rodents. It has been previously demonstrated that inhibitory GABAergic neurons within the vlPAG have a major role in this nociceptive modulation. However, the PAG contains a diverse range of neuronal subtypes and the contribution of different subtypes of inhibitory neurons to nociceptive control has not been investigated. Here, we employed a chemogenetic strategy in mice that express Cre recombinase under the promotor for the glycine transporter 2 (GlyT2::cre) to modulate a novel group of glycinergic neurons within the vlPAG and then investigate their role in nociceptive control. We show that activation of GlyT2-PAG neurons enhances cold and noxious heat responses and increases locomotor activity (LMA) in both male and female mice. In contrast, inhibition of GlyT2-PAG neurons reduced nociceptive responses, while locomotor behaviors were unaffected. Our findings demonstrate that GlyT2+ neurons in the vlPAG modulate nociception and suggest that strategies targeting GlyT2-PAG neurons could be used to design novel analgesic therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.