Abstract
Through a two-way control of hexadecyl trimethyl ammonium bromide (CTAB) and hydrochloric acid (HCl), the PdCu nanoalloys with branched structures are synthesized in one step by hydrothermal reduction and used as electrocatalysts for formic acid oxidation reaction (FAOR). In this two-way control strategy, the CTAB is used as a structure-oriented surfactant, while a certain amount of HCl is used to control the reaction kinetics for achieving gradual growth of multi-dendritic structures. The characterizations including scanning transmission electron microscope (STEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggest that PdCu nanoalloys with unique multi-dendritic branches have favorable electronic structure and lattice strain for electrocatalyzing the oxidation of formic acid. In specific, among the electrocatalysts with different Pd/Cu ratios, the Pd1Cu1 branched nanoalloys have the largest electrochemically active surface area (ECSA) and the best performance for the FAOR. The catalytic activity of the Pd1Cu1 branched nanoalloys is 2.4 times that of commercial Pd black. After the chronoamperometry test, the Pd1Cu1 branched nanoalloys still maintain their original morphologies and higher current density than that of the commercial Pd black. In addition, in the CO-stripping tests, the initial oxidation potential and the oxidation peak potential of the PdCu branched nanoalloys for CO adsorption are lower than those of commercial Pd balck, evincing their better anti-poisoning performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.