Abstract
Moving animals experience constant sensory feedback, such as panoramic image shifts on the retina, termed optic flow. Underlying neuronal signals are thought to be important for exploratory behavior by signaling unintended course deviations and by providing spatial information about the environment [1, 2]. Particularly in insects, the encoding of self-motion-related optic flow is well understood [1-5]. However, a gap remains in understanding how the associated neuronal activity controls locomotor trajectories. In flies, visual projection neurons belonging to two groups encode panoramic horizontal motion: horizontal system (HS) cells respond with depolarization to front-to-back motion and hyperpolarization to the opposite direction [6, 7], and other neurons havethe mirror-symmetrical response profile [6, 8, 9]. With primarily monocular sensitivity, the neurons' responses are ambiguous for different rotational andtranslational self-movement components. Such ambiguities can be greatly reduced by combining signals from both eyes [10-12] to determine turning and movement speed [13-16]. Here, we explore the underlying functional logic by optogenetic HS cell manipulation in tethered walking Drosophila. We show that de- and hyperpolarization evoke opposite turning behavior, indicating that both direction-selective signals are transmitted to descending pathways for course control. Further experiments reveal a negative effect of bilaterally symmetric de- and hyperpolarization on walking velocity. Our results are therefore consistent with a functional architecture in which the HS cells' membrane potential influences walking behavior bi-directionally via two decelerating pathways.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have