Abstract

Cities are in a period of rapid urban development and high-rise buildings are constantly emerging. The characteristics of a fire in a high-rise building are the rapid spread of the fire, the difficulty of fighting the fire, and the difficulty of evacuation. Intelligent fire evacuation requires dynamic planning of paths in fire field, it is necessary to automatically adjust the evacuation route in the building according to the real-time information of the fire. In this paper, an improved bidirectional ant colony algorithm is proposed to optimize fire evacuation routes. In order to improve the global search capability of the algorithm, a bidirectional search strategy with the A* algorithm is designed for the ant colony algorithm, the blindness of the algorithm is reduced in the initial search, the pheromone update strategy is improved, and the convergence speed of the algorithm is increased. The fire scene information is combined with the steering penalty coefficient to improve the algorithm’s evaporation coefficient, heuristic function and transition probability, avoid the risk of falling into the local optimum, improve the search efficiency of the algorithm and the smoothness of the path, and effectively avoid areas affected by the fire. The effectiveness of the algorithm is verified by simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call