Abstract
Microbial natural products comprise diverse architectures that are generated by equally diverse biosynthetic strategies. In peptide natural products, amino acid sidechains are frequently used as sites of modification to generate macrocyclic motifs. Backbone amide groups, among the most stable of biological moieties, are rarely used for this purpose. Here we report the discovery and biosynthesis of bicyclostreptins-peptide natural products from Streptococcus spp. with an unprecedented structural motif consisting of a macrocyclic β-ether and a heterocyclic sp3-sp3 linkage between a backbone amide nitrogen and an adjacent α-carbon. Both reactions are installed, in that order, by two radical S-adenosylmethionine (RaS) metalloenzymes. Bicyclostreptins are produced at nM concentrations and are potent growth regulation agents in Streptococcus thermophilus. Our results add a distinct and unusual chemotype to the growing family of ribosomal peptide natural products, expand the already impressive catalytic scope of RaS enzymes, and provide avenues for further biological studies in human-associated streptococci.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.