Abstract

We show that bicircular light (BCL) is a versatile way to control magnetic symmetries and topology in materials. The electric field of BCL, which is a superposition of two circularly polarized light waves with frequencies that are integer multiples of each other, traces out a rose pattern in the polarization plane that can be chosen to break selective symmetries, including spatial inversion. Using a realistic low-energy model, we theoretically demonstrate that the three-dimensional Dirac semimetal Cd_{3}As_{2} is a promising platform for BCL Floquet engineering. Without strain, BCL irradiation induces a transition to a noncentrosymmetric magnetic Weyl semimetal phase with tunable energy separation between the Weyl nodes. In the presence of strain, we predict the emergence of a magnetic topological crystalline insulator with exotic unpinned surface Dirac states that are protected by a combination of twofold rotation and time reversal (2^{'}) and can be controlled by light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.