Abstract
To identify and localize the monocarboxylate transporters (MCTs) expressed in bovine corneal endothelial cells (BCEC) and to test the hypothesis that buffering contributed by HCO(3)(-), sodium bicarbonate cotransporter (NBCe1), sodium hydrogen exchanger (NHE), and carbonic anhydrase (CA) activity facilitates lactate flux. MCT1-4 expression was screened by RT-PCR, Western blot analysis, and immunofluorescence. Endogenous lactate efflux and/or pH(i) were measured in BCEC in HCO(3)(-)-free or HCO(3)(-)-rich Ringer, with and without niflumic acid (MCT inhibitor), acetazolamide (ACTZ, a CA inhibitor), 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) (Na(+)/H(+) exchange blocker), disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; anion transport inhibitor), or with NBCe1-specific small interfering (si) RNA-treated cells. MCT1, 2, and 4 are expressed in BCEC. MCT1 was localized to the lateral membrane, MCT2 was lateral and apical, while MCT4 was apical. pH(i) measurements showed significant lactate-induced cell acidification (LIA) in response to 20-second pulses of lactate. Incubation with niflumic acid significantly reduced the rate of pHi change (dpH(i)/dt) and lactate-induced cell acidification. EIPA inhibited alkalinization after lactate removal. Lactate-dependent proton flux was significantly greater in the presence of HCO(3)(-) but was reduced by ACTZ. Efflux of endogenously produced lactate was significantly faster in the presence of HCO(3)(-), was greater on the apical surface, was reduced on the apical side by ACTZ, as well as on the apical and basolateral side by NBCe1-specific siRNA, DIDS, or EIPA. MCT1, 2, and 4 are expressed in BCEC on both the apical and basolateral membrane (BL) surfaces consistent with niflumic acid-sensitive lactate-H(+) transport. Lactate dependent proton flux can activate Na(+)/H(+) exchange and be facilitated by maximizing intracellular buffering capacity through the presence of HCO(3)(-), HCO(3)(-) transport, NHE and CA activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.