Abstract

Three monomeric polyoxometalates [M(C10H8N2)3][α-PMoMoO40Zn2(C10H8N2)2]·2H2O (M-PMo12Zn2, M = Fe, Co, Ru) with {Zn(bpy)2}2+ units capped on reduced α-Keggin polyanions and [M(bpy)3]2+ counter-ions were synthesized under hydrothermal conditions. The 1D polymer [N(C4H9)4][Ru(C10H8N2)3][α-PMoMoO43] (Ru-PMo14) was prepared by a similar strategy, in the absence of 2,2'-bpy ligands. In this chain capped reduced Keggin anions are linked via Mo-O-Mo bridges and are surrounded by both tetrabutylammonium cations and [Ru(bpy)3]2+ counter-ions. The compounds were characterized in the solid state by single crystal and powder X-ray diffraction and IR spectroscopy and in solution by 31P NMR spectroscopy. 31P diffusion ordered NMR spectroscopy (DOSY) indicates that the diffusion coefficient of the dissolved species of Ru-PMo14 corresponds to a dimeric structure. Magnetic susceptibility measurements performed on Ru-PMo14 show the existence of antiferromagnetic interactions between the d1 electrons of the six MoV centers, with a singlet spin ground state. However, attempts to fit the data in the 2-300 K temperature range with Heisenberg Hamiltonians adapted for 0 or 1D systems suggest that these electrons are delocalized. Density Functional Theory (DFT) and Wave Function Theory (WFT) calculations indicate a migration of the electrons of the capping MoV centers into the PMo12 units at high temperature, allowing the rationalization of the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call