Abstract

ABSTRACTThe relationships between Boron Interstitial Cluster (BIC) evolution and boron diffusion in relaxed Si0.8Ge0.2 have been investigated. Structures were grown by Molecular Beam Epitaxy (MBE) with surface boron wells of variant composition extending 0.25 [.proportional]m into the substrate, as well as boron marker layers positioned 0.50 [.proportional]m below the surface. The boron well concentrations are as follows: 0, 7.5×1018, 1.5×1019, and 5.0×1019 atoms/cm3. The boron marker layers are approximately 3 nm wide and have a peak concentration of 5×1018 atoms/cm3. Samples were ion implanted with 60 keV Si+ at a dose of 1×1014 atoms/cm2 and subsequently annealed at 675°C and 750°C for various times. Plan-view Transmission Electron Microscopy (PTEM) was used to monitor the agglomeration of injected silicon interstitials and the evolution of extended defects in the near surface region. Secondary Ion Mass Spectroscopy (SIMS) concentration profiles facilitated the characterization of boron diffusion behaviors during annealing. Interstitial supersaturation conditions and the resultant defect structures of ion implanted relaxed Si0.8Ge0.2 in both the presence and absence of boron have been characterized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.