Abstract

Employment of multivalent charge carriers with higher charge density to replace frequently used univalent ones can effectively increase the areal capacitance of micro-supercapacitors utilizing few-layered MXene self-assembled electrodes. However, their larger charge density and ionic size usually lead to a sluggish extraction/insertion dynamic between MXene interlayers with limited free space, greatly offsetting the benefits. Herein, we show how to facilitate de-/intercalation of high-valence charge carriers (Al3+) by using polypyrrole-coated bacterial cellulose (BC@PPy) nanospacers to expand MXene interlayer space. Together with the longitudinal electron transport path between interlayers synchronously constructed by the conductive PPy shell, a significant 496% areal capacitance enhancement (232.79 mF cm-2) is realized in the fabricated symmetric Al3+-ion micro-supercapacitors (AMSCs) with the obtained MXene/BC@PPy hybrid film electrodes employing polyacrylamide/1 M AlCl3·6H2O hydrogel electrolyte relative to the cell with pure MXene film electrodes (39.02 mF cm-2). Further benefiting from a high output voltage of 1.2 V, the AMSCs acquire an areal energy density up to 45.3 μW h cm-2. As a device demonstration, we further fabricate a biaxially stretchable AMSC array, simulate its spatial strain distribution during biaxial stretching, and characterize its electrochemical and mechanical properties up to an extreme areal strain of 300%. The proposed rational fabrication paradigm achieves a new level of combined energy density, stretch performance, and architectural simplicity, which presents a route toward a commercially viable stretchable micro energy-storage system with high energy efficiencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.