Abstract

We propose a biaxial scanning mirror with a large rotation angle and low resonance frequency for a compact and low-power-consuming LIDAR. The scanning mirror in LIDAR, which is driven by a rotating motor, requires a wide field of view and a low working frequency. To achieve these requirements, we develop an electromagnetic actuator for a biaxial scanning mirror that consists of two pairs of coils, one yoke with a cross shape, one rare-earth permanent magnet, and one gimbal structure frame. The gap distance between the permanent magnet and yoke is adjusted to find the optimum condition. The overall size of the developed system is 20 mm × 20 mm × 12 mm (width × depth × height) with a gap distance of 3 mm. Experiments and simulations are performed with various gap distances. The experimental results indicate that the maximum rotation angle is ± 51° at 37 Hz when the gap distance is 3 mm and the applied voltage is ± 5 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.