Abstract
The mechanical properties of biaxially oriented polymethyl methacrylate, obtained on a broad range of stretch ratios and under a variety of orientation conditions, have been investigated. There is a fundamental difference between the variation of the forced elastic limit with increase in stretch ratio, which is monotone increasing, and the variation of such properties as the brittle strength, brittle temperature, true strength and elongation at break, which have an optimum at a certain stretch ratio. It is shown that the presence of an optimum is associated with the transformation of the supermolecular structures in the process of biaxial high-elastic deformation. A relation is established between the mechanical properties of biaxially oriented polymethyl methacrylate (orientation hardening) and the density of the molecular network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.