Abstract

There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. Concentration-response curves to G protein dissociation, β-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from β-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.