Abstract

Empirical models of microwave transistors based on an equivalent circuit are valid for only one bias point. Bias-dependent analysis requires repeated extractions of the model parameters for each bias point. In order to make model bias-dependent, a new hybrid empirical–neural model of microwave field-effect transistors is proposed in this article. The model is a combination of an equivalent circuit model including noise developed for one bias point and two prior knowledge input artificial neural networks (PKI ANNs) aimed at introducing bias dependency of scattering (S) and noise parameters, respectively. The prior knowledge of the proposed ANNs involves the values of the S- and noise parameters obtained by the empirical model. The proposed hybrid model is valid in the whole range of bias conditions. Moreover, the proposed model provides better accuracy than the empirical model, which is illustrated by an appropriate modelling example of a pseudomorphic high-electron mobility transistor device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.