Abstract

The exponentiated Teissier distribution (ETD) offers an alternative for modeling survival data, taking into account flexibility in modeling data with increasing and decreasing hazard rate functions. The most popular method for parameter estimation of the ETD distribution is the maximum likelihood estimation (MLE). The MLE, on the other hand, is notoriously biased for its small sample sizes. We are therefore driven to generate virtually unbiased estimators for ETD parameters. More specifically, we focus on two methods of bias correction, bootstrapping and analytical approaches, to reduce MLE biases to the second order of bias. The performances of these approaches are compared through Monte Carlo simulations and two real-data applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.