Abstract

The fast-trimmed likelihood estimate is a robust method to estimate the parameters of a mixture regression model. However, this method is vulnerable to the presence of bad leverage points, which are outliers in the direction of independent variables. To address this issue, we propose the weighted fast-trimmed likelihood estimate to mitigate the impact of leverage points. The proposed method applies the weights of the minimum covariance determinant to the rows suspected of containing leverage points. Notably, both real data and simulation studies were considered to determine the efficiency of the proposed method compared to the previous methods. The results reveal that the weighted fast-trimmed estimate method is more robust and reliable than the fast-trimmed likelihood estimate and the expectation–maximization (EM) methods, particularly in cases with small sample sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.