Abstract

A critical-state model is postulated that incorporates, for the first time, the structural anisotropy and flux-line cutting effect in a type-II superconductor. The model is constructed starting from the theoretical scheme of Romero-Salazar and Pérez-Rodríguez to study the anisotropy induced by flux cutting. Here, numerical calculations of the magnetic induction and static magnetization are presented for samples under an alternating magnetic field, orthogonal to a static dc-bias one. The interplay of the two anisotropies is analysed by comparing the numerical results with available experimental data for an yttrium barium copper oxide (YBCO) plate, and a vanadium–titanium (VTi) strip, subjected to a slowly oscillating field in the presence of a static field .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.