Abstract

High energy storage and charge-discharge performances under low electric field are desirable for lead-free dielectric materials because of environmental hazards, the risk of high voltage and the high cost of insulation technology. Herein, lead-free ceramics based on 0.6BNT-0.4Sr0.775Bi0.15TiO3 (BNT-SBT) were designed, which simultaneously achieves a large energy storage density (Wrec~ 2.41 J/cm3) and a high efficiency (η~87.5%) under a low electric field of 190 kV/cm due to enhanced dielectric properties and the relaxation response. Moreover, the energy storage properties of the BNT-SBT ceramic exhibit moderate temperature stability, excellent frequency dependence, and cycling reliability. Furthermore, the charge-discharge performance simultaneously features a high power density (PD~51.4 MW/cm3), an ultrafast discharge speed (t0.9–77 ns), and remarkable stability against temperature and cycling. This study exploits a high-efficiency BNT-related ceramics with concurrently high energy storage and charge-discharge performances under low electric fields, which provides great potential in practical dielectric capacitor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call