Abstract
Cellular solids with internal microstructures enable the reduction in some environmental loads because of their lightweight bodies, and deliver unique elastic, electromagnetic and thermal properties. In particular, their large deformability without topological change is one of their most interesting solid properties. In this study, we propose a bar-and-joint framework assembled with a basic unit of motion structure, which has eightfold rotational symmetry (MS-8). The MS-8 is made of tetragons, arranged in a concentric fashion, which are transformed into either one of two different aligned patterns of square cells according to the coordinated rotations of the inside squares. Square cells are extremely anisotropic, which is why the stiffness of the MS-8 changes dramatically in the transformation process. Thus, the MS-8 exhibits bi-stiffness according to the two different motions. Taking advantage of the bi-stiffness property, the possibilities of deformation behaviours for repetitive structures of MS-8s are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.