Abstract

Driven class-B lasers are devices which possess quadratic nonlinearities and are known to exhibit chaotic behavior. We describe the onset of global heteroclinic connections which give rise to chaotic saddles. These form the precursor topology which creates both localized homoclinic chaos, as well as global mixed-mode heteroclinic chaos. To locate the relevant periodic orbits creating the precursor topology, approximate maps are derived using matched asymptotic expansions and subharmonic Melnikov theory. Locating the relevant unstable fixed points of the maps provides an organizing framework to understand the global dynamics and chaos exhibited by the laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.