Abstract

Random bi-functional copolymers bearing fluorinated units and sol–gel forming units were prepared and used together with silica particles in a one-pot process for preparing superamphiphobic coatings. The copolymers P(FOEA-r-IPSMA) were prepared by atom transfer radical polymerization (ATRP) of 2-(perfluorooctyl)ethyl acrylate (FOEA) and 3-(triisopropyloxy)silylpropyl methacrylate (IPSMA). The uniform silica particles were prepared using a modified Stober process. Stirring P(FOEA-r-IPSMA), silica, water, and HCl together with substrates triggered the sol–gel reactions of the IPSMA units. These involved first the hydrolysis of IPSMA to yield silanol groups and then the condensation of the IPSMA silanol groups among themselves, and with silanol groups on silica or glass surfaces or with hydroxyl groups on cotton or filter paper. At optimized mass ratios of P(FOEA-r-IPSMA) to silica, the resultant coatings consisted of lightly covered silica particles that were embedded in a crosslinked P(FOEA-r-IPSMA) film. By optimizing the molar ratio between FOEA and IPSMA in P(FOEA-r-IPSMA), the rough particulate coatings on cotton, filter paper, and glass plates exhibited superamphiphobicity. More importantly, the particulate coatings were resistant to solvent extraction and NaOH etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.