Abstract

This study demonstrates a simple and low-cost process for the in-situ doping and decoration of ZnO nanorods with carbon (CC–ZnO). In CC–ZnO, C-doping decreased the charge density (1.75 × 1018 cm−3) at the non-active sites of ZnO and decreased the charge transfer resistance (101 Ω) at the C-doped-ZnO/electrolyte interface by suppressing native defects and reducing the Schottky barrier height (–0.20 eV), respectively. Moreover, C-decoration enhanced the amphoteric performances of ZnO to react efficiently with H+ and OH− ions in an aqueous electrolyte, demonstrating a high pH sensitivity (48 mV/pH) and fast response time (7 s). Moreover, C-decoration enhanced the dispersion stability (92 h for 7.5 mg/mL concentration) and surface area (43.08 m2·g−1) of CC–ZnO in liquid phase, improving the monolayer adsorption capacity (119.40 mg/g) for the removal of rhodamine B (RhB) from aqueous solution. The optimum concentration and pH value of CC–ZnO and aqueous solution were determined to be 25 mg and 6.5, respectively, for maximum (84 %) removal of RhB in the initial five hours of reaction. Adsorption rate analysis revealed that CC–ZnO removed RhB through pseudo-second-order kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.