Abstract

Bi-directional fluid–structure interaction becomes important when viscous flow changes the geometry of the domain significantly because of the pressure load. Large deformation in domain causes numerical convergence problems, which are solved by mesh smoothing, re-meshing and a time discrete iterative solver algorithm using industrial computational fluid dynamics and finite element analysis code. In this paper, this approach is used for laminated composite propellers considered as mixers. It experiences heavy thrust, which causes large deformations. Each layer of laminate is modeled as a solid element with anisotropic material data. Comparative study is presented between uni-directional and bi-directional fluid–structure interaction for mixer blades. Change in pressure distribution, stress distribution, thrust, torque and pitch angle of the blade are presented in later parts of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.