Abstract

In this paper, bi-continuous interpenetrated porous composites (BIPCs) were prepared with the combination of melt foaming and infiltration casting process. All BIPCs exhibited superior mechanical performance than aluminum foam (AF) and the sum of their components. Among them, 4# BIPC (with 75 struts) showed the highest specific energy absorption which is 2.70 times that of AF, and 3# BIPC (with 48 struts) presented the best improvement in terms of structural strength, while 2# BIPC (with 27 struts) exhibited the largest enhancement of energy absorption. The results indicate that the in situ interface of AF and ordered lattice structure contributes to the enhanced strength of BIPCs, while pores in AF prolongs the stress plateau stage. This research provides a novelty method to solve the trade-off between different mechanical property indicators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.