Abstract

High filament count, silver-sheathed composite wires of Ca 0.1Y 0.9Ba 2Cu 4O 8 (Y–124) were prepared by a metallic precursor route. The ductility of the metallic precursor enabled one to manufacture tapes containing up to 962 407 filaments, with filament dimensions as fine as 0.25 μm thick and 1 μm wide. By using a thermal-mechanical treatment to texture the Y–124 grains, transport critical current densities in the oxide filaments of 69 500 A/cm 2 at 4.2 K in self-field were obtained. Moreover, in an applied field of 0.1 T, the samples retained 39% of their self-field critical current density. A TEM investigation revealed significant bi-axial crystallographic texture: in areas viewed, c-axis alignment of adjacent grains was within 10° and oriented perpendicular to the tape face; a-axis alignment of adjacent grains was within 15° and oriented parallel to the longitudinal direction of the filaments. Furthermore, c-axis texture alone did not adequately predict the performance of these Y−124 composite conductors. Instead, performance scaled with the degree of bi-axial texture. These wires exhibited among the best reported J c for a polycrystalline, sintered wire of YBCO in an applied magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call