Abstract

Abstract The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma-ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming years, we expect many more such mergers. Modeling such systems presents a significant computational challenge along with the observational one. To meet this challenge, we present , a scheme for solving general relativistic magnetohydrodynamics with energy-dependent neutrino transport in full (3 + 1) dimensions, facilitated by Monte Carlo methods. We present a suite of tests demonstrating the accuracy, efficacy, and necessity of our scheme. We demonstrate the potential of our scheme by running a sample calculation in a domain of interest—the dynamics and composition of the accretion disk formed by a binary neutron star merger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.