Abstract
Mapping internal, locally used lab test codes to standardized logical observation identifiers names and codes (LOINC) terminology has become an essential step in harmonizing electronic health record (EHR) data across different institutions. However, most existing LOINC code mappers are based on text-mining technology and do not provide robust multi-language support. We introduce a simple, yet effective tool called big data-guided LOINC code mapper (BGLM), which leverages the large amount of patient data stored in EHR systems to perform LOINC coding mapping. Distinguishing from existing methods, BGLM conducts mapping based on distributional similarity. We validated the performance of BGLM with real-world datasets and showed that high mapping precision could be achieved under proper false discovery rate control. In addition, we showed that the mapping results of BGLM could be used to boost the performance of Regenstrief LOINC Mapping Assistant (RELMA), one of the most widely used LOINC code mappers. BGLM paves a new way for LOINC code mapping and therefore could be applied to EHR systems without the restriction of languages. BGLM is freely available at https://github.com/Bin-Chen-Lab/BGLM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.