Abstract
Low-light image enhancement poses significant challenges due to its ill-posed nature. Recently, deep learning-based methods have attempted to establish a unified mapping relationship between normal-light images and their low-light versions but frequently struggle to capture the intricate variations in brightness conditions. As a result, these methods often suffer from overexposure, underexposure, amplified noise, and distorted colors. To tackle these issues, we propose a brightness-guided normalizing flow framework, dubbed BGFlow, for low-light image enhancement. Specifically, we recognize that low-frequency sub-bands in the wavelet domain carry significant brightness information. To effectively capture the intricate variations in brightness within an image, we design a transformer-based multi-scale wavelet-domain encoder to extract brightness information from the multi-scale features of the low-frequency sub-bands. The extracted brightness feature maps, at different scales, are then injected into the brightness-guided affine coupling layer to guide the training of the conditional normalizing flow module. Extensive experimental evaluations demonstrate the superiority of BGFlow over existing deep learning-based approaches in both qualitative and quantitative assessments. Moreover, we also showcase the exceptional performance of BGFlow on the underwater image enhancement task.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have