Abstract

Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium-sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core-shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm-2 ) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm-2 ) with a low electrolyte/sulfur ratio (10 μL mg-1 ). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call