Abstract

Thermally activated delayed fluorescence (TADF) emitters with a high horizontal orientation are highly essential for improving the external quantum efficiency (EQE) of organic light-emitting diodes; however, pivotal molecular design strategies to improve the horizontal orientation of solution processable TADF emitters are still scarce and challenging. Herein, a phenyl bridge is adopted to connect the double TADF units, and a dimerized TADF dendrimer, D4CzBNPh-SF, is successfully constructed. Compared to counterpart with single TADF unit, the proof-of-the-concept molecule not only exhibits an improved horizontal dipole ratio (78%) due to the π-delocalization-induced extended molecular conjugation, but also displays a faster reversed intersystem crossing rate constant (6.08×106 s-1) and a high photoluminescence quantum yield of 95% in neat film. Consequently, the non-doped solution-processed device with D4CzBNPh-SF as the emitter, achieves an ultra-high maximum EQE of 32.6%, which remains at 26.6% under a luminance of 1000 cd/m2. Furthermore, using D4CzBNPh-SF as a sensitizer, the TADF-sensitized fluorescence device exhibits a high maximum EQE of 30.7% at a luminance of 575 cd/m2 and a full width at half maximum of 36 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.