Abstract
ABSTRACT Statistical paradigms limit the perspective and tools social work researchers use to study the world and answer questions impacting people and policy. Currently, quantitative social work researchers overwhelmingly rely on the frequentist paradigm of statistics. This paper discusses foundational differences between the frequentist and Bayesian statistical paradigms, describes basic concepts of Bayesian analysis, compares Bayesian and frequentist statistical analysis for a sample social work problem, and introduces two types of causal analyses built on Bayesian statistical thinking: counterfactual causality, and causality based on work by computer scientist Judea Pearl. Implications for social work research are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.