Abstract

Cervical cancer is a common and preventable disease that poses a significant threat to women's health and well-being. It is the fourth most prevalent cancer among women worldwide, with approximately 604,000 new cases and 342,000 deaths in 2020, according to the World Health Organization. Early detection and diagnosis of cervical cancer are crucial for reducing mortality and morbidity rates. The Papanicolaou smear test is a widely used screening method that involves the examination of cervical cells under a microscope to identify any abnormalities. However, this method is time-consuming, labor-intensive, subjective, and prone to human errors. Artificial intelligence techniques have emerged as a promising alternative to improve the accuracy and efficiency of Papanicolaou smear diagnosis. Artificial intelligence techniques can automatically analyze Papanicolaou smear images and classify them into normal or abnormal categories, as well as detect the severity and type of lesions. This paper provides a comprehensive review of the recent advances in artificial intelligence diagnostics of the Papanicolaou smear, focusing on the methods, datasets, performance metrics, and challenges. The paper also discusses the potential applications and future directions of artificial intelligence diagnostics of the Papanicolaou smear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call