Abstract

An increase in interest in the use of sensing technologies (e.g., electrochemistry, fluorescence, thermal, surface plasmon resonance, piezo, reflectometry, chemo or bioluminescence, and optics) as analytical methods to be implemented in a wide range of fields, including agriculture and food has been witnessed in recent years. Most of these applications have been evaluated and developed targeting a wide range of samples (e.g., raw materials, commodities, soils, water, food ingredients, natural products). Sensing technologies must be integrated with different data analytical techniques (e.g., pattern recognition, modelling techniques, calibration development) to develop a target application. The increasing availability of modern and inexpensive sensors, together with access to easy-to-use software is determining a steady growth in the number of applications and uses of these technologies. This short review underlined and briefly discussed practical considerations that support the robust development and implementation of applications that combine the use of sensing technologies with chemometrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.