Abstract

Although the knapsack-constrained and k-system-constrained non-monotone adaptive submodular maximization have been well studied in the literature, it has only been settled given the additional assumption of pointwise submodularity. In this paper, we remove the common assumption on pointwise submodularity and propose the first approximation solutions for both knapsack and k-system constrained adaptive submodular maximization problems. Inspired by two recent studies on non-monotone adaptive submodular maximization, we develop a sampling-based randomized algorithm that achieves a 110 approximation ratio for the case of a knapsack constraint and that achieves a 12k+4 approximation ratio for the case of a k-system constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.