Abstract

Co-packaged optics (CPO) technology is well positioned to break through the bottlenecks that impede efficient bandwidth scaling in key near-term commercial integrated circuits. We begin by providing some historical context for this important sea change in the optical communications industry. Then, motivated by GPU-based accelerated computing requirements, we investigate the next pain points that are poised to constrain bandwidth and efficiency in future CPO-based systems. We identify 2.5D integrated optics (i.e., bringing optics onto the interposer) as a promising solution that can enable continued scaling for these systems due to the dense wiring available which facilitates more efficient slow-and-wide electrical interfaces. We explore the benefits, challenges, and requirements associated with such tight coupling of the processors and optical engines by considering high-level photonic link design, technology, and packaging. We demonstrate the viability of a control loop which can adequately regulate temperature within the aggressive thermal environment. Then, we introduce a custom simulation framework that allows quantified comparisons of detailed design decisions; the simulations validate the feasibility of the general approach while also providing key guidance to designers on best directions to pursue for efficient optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call