Abstract
We consider a system of N interacting bosons in the mean-field scaling regime and construct corrections to the Bogoliubov dynamics that approximate the true N-body dynamics in norm to arbitrary precision. The N-independent corrections are given in terms of the solutions of the Bogoliubov and Hartree equations and satisfy a generalized form of Wick's theorem. We determine the n-point correlation functions of the excitations around the condensate, as well as the reduced densities of the N-body system, to arbitrary accuracy, given only the knowledge of the two-point functions of a quasi-free state and the solution of the Hartree equation. In this way, the complex problem of computing all n-point correlation functions for an interacting N-body system is essentially reduced to the problem of solving the Hartree equation and the PDEs for the Bogoliubov two-point functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.