Abstract
Current video object segmentation approaches primarily rely on frame-wise appearance information to perform matching. Despite significant progress, reliable matching becomes challenging due to rapid changes of the object's appearance over time. Moreover, previous matching mechanisms suffer from redundant computation and noise interference as the number of accumulated frames increases. In this paper, we introduce a multi-frame spatio-temporal context memory (STCM) network to exploit discriminative spatio-temporal cues in multiple adjacent frames by utilizing a multi-frame context interaction module (MCI) for memory construction. Based on the proposed MCI module, a sparse group memory reader is developed to enable efficient sparse matching during memory reading. Our proposed method is generic and achieves state-of-the-art performance with real-time speed on benchmark datasets such as DAVIS and YouTube-VOS. In addition, our model exhibits robustness to sparse videos with low frame rates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have