Abstract
The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy - approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.