Abstract

A key pathologic event in neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, is endoplasmic reticulum (ER) stress-induced neuronal cell death. ER stress-induced generation of reactive oxygen species (ROS) has been implicated in neurological disease processes. Betulin is one of the major triterpenoids found in Betula platyphylla that possesses several biological properties, including cytoprotective and antioxidative effects. Therefore, we investigated whether betulin could prevent ER stress-induced neurotoxicity in HT-22 hippocampal neuronal cells. We observed that betulin reduced the thapsigargin (TG, an ER stress inducer)-induced apoptosis of HT-22 cells. Moreover, the cytoprotective effects of betulin were comparable to those of tauroursodeoxycholic acid, a potent ER stress-reducing agent. In our study, we confirmed that the ER stress-induced accumulation of ROS plays an important role in HT-22 cell death. Betulin also displayed cytoprotective effects in TG-injured HT-22 cells by reducing ROS generation; these results were comparable to those for N-acetyl-L-cysteine, a known ROS inhibitor. In addition, SnPP, a heme oxygenase-1 (HO-1) inhibitor significantly blocked the cytoprotective effects and ROS scavenging activity of betulin. Based on these results, we believe that betulin-mediated induction of HO-1 may contribute to the neuroprotective effects against ER stress in HT-22 hippocampal cells. We also found that betulin significantly inhibited the TG-induced expression of CHOP and caspase-12. These results demonstrated that betulin could serve as a potential therapeutic agent against ER stress-induced neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.