Abstract
This article addresses a gap in many, if not all, introductory mathematical statistics textbooks, namely, transforming a random variable so that it better mimics a normal distribution. Virtually all such textbooks treat the subject of variable transformations, which furnishes a nice opportunity to introduce and study this transformation-to-normality topic, a topic students frequently encounter in subsequent applied statistics courses. Accordingly, this article reviews variable power transformations of the Box–Cox type within the context of normal curve theory, as well as addresses their corresponding back-transformations. It presents four theorems and a conjecture that furnish the basics needed to derive equivalent results for all nonnegative values of the Box–Cox power transformation exponent. Results are illustrated with the exponential random variable. This article also includes selected pedagogic tools created with R code.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have