Abstract

Layered magnets have recently received tremendous attention, however, spin-exchange coupling mechanism across their interlayer regions is yet to be revealed. Here, we report a Bethe-Slater-curve (BSC) like behavior in nine transition metal dichalcogenide bilayers (MX2, M=V, Cr, Mn; X=S, Se, Te) and established interlayer spin-exchange coupling mechanisms at their van der Waals gaps using first-principle calculations. The BSC-like behavior offers a distance-dependent interlayer anti-ferromagnetic (AFM) to ferromagnetic (FM) transition. This phenomenon is explained with the spin-exchange coupling mechanisms established using bilayer CrSe2 as a prototype in this work. The Se pz wavefunctions from two adjacent interfacial Se sublayers overlap at the interlayer region. The spin alignment of the region determines interlayer magnetic coupling. At a shorter interlayer distance, Pauli repulsion at the overlapped region dominates and thus favors anti-parallel oriented spins leading to interlayer AFM. For a longer distance, kinetic energy gain of polarized electrons across the bilayer balances the Pauli repulsion and the bilayer thus prefers an interlayer FM state. In light of this, the AFM-FM transition is a result of competition between Pauli and Coulomb repulsion and kinetic energy gain. All these results open a new route to tune interlayer magnetism and the revealed spin-exchange coupling mechanisms are paramount additions to those previously established ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.