Abstract

Betaine aldehyde dehydrogenase (BADH), the terminal enzyme of the glycine betaine synthetic pathway was purified 245-fold from the mitochondria of Atlantic and Chesapeake Bay oyster populations acclimated to 350 mosm, using ammonium sulfate precipitation, anion exchange, and affinity chromatography. BADH from both populations functions at its maximum rate at 50-55 degrees C over a broad pH range (7.5-9). BADH activity is also modulated by increased [Na(+)] and [K(+)]. Although BADH from both populations has a similar V(max), BADH from Bay oysters has a substantially lower affinity for its substrate, betaine aldehyde, (K(m) = 0.36 mM), than BADH from Atlantic oysters (K(m) = 0.1 mM). Despite kinetic differences, BADH from both Atlantic and Chesapeake Bay oysters have the same molecular weight based on electrophoretic analysis. These differences in BADH enzyme kinetics between the two oyster populations probably partially explain the lower glycine betaine synthesis rates and concentrations in Chesapeake Bay oysters. J. Exp. Zool. 286:238-249, 2000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.