Abstract

Beta-catenin is a multifunctional protein that plays key roles in cadherin-based cell adherens junctions and in the Wnt signaling pathway. The canonical Wnt/β-catenin pathway can regulate transcription factors that control cell movement/invasion. We investigated whether β-catenin regulates ameloblast movement through canonical Wnt signaling. The morphological and physical properties of enamel were assessed in enamel from control and β-catenin conditional knockout (cKO) mice. Ameloblast-lineage cells (ALC) were used to investigate the potential roles of β-catenin in cell migration and in E-cadherin expression. Compared with controls, incisors from β-catenin cKO mice were short, blunt, and where enamel was present, it was soft and malformed. Scanning electron microscopy revealed a dysplastic rod pattern within the enamel of incisors from β-catenin cKO mice, and Vickers microhardness measurements confirmed that mice with β-catenin ablated from their enamel organ had enamel that was significantly softer than normal. Amelogenesis was disrupted in the absence of β-catenin and the ameloblasts did not differentiate properly. We further demonstrated that migration of ALCs was inhibited in vitro and that E-cadherin expression was significantly up-regulated when ALCs were treated with the β-catenin inhibitor, ICG-001. Beta-catenin ablation causes enamel malformation in mice and this phenotype may occur, in part, by a lack of ameloblast differentiation and/or movement necessary to form the decussating enamel rod structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call