Abstract

Beta-arrestins bind to agonist-activated G-protein-coupled receptors regulating signaling events and initiating endocytosis. In beta-arrestin2-/- (beta arr2-/-) mice, a complex phenotype is observed that includes altered sensitivity to morphine. However, little is known of how beta-arrestin2 affects mu receptor signaling. We investigated the coupling of mu receptors to voltage-gated Ca2+ channels (VGCCs) in beta arr2+/+ and beta arr2-/- dorsal root ganglion neurons. A lack of beta-arrestin2 reduced the maximum inhibition of VGCCs by morphine and DAMGO (D-Ala2-N-Me-Phe4-glycol5-enkephalin) without affecting agonist potency, the onset of receptor desensitization, or the functional contribution of N-type VGCCs. The reduction in inhibition was accompanied by increased naltrexone-sensitive constitutive inhibitory coupling of mu receptors to VGCCs. Agonist-independent mu receptor inhibitory coupling was insensitive to CTAP (Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2), a neutral antagonist that inhibited the inverse agonist action of naltrexone. These functional changes were accompanied by diminished constitutive recycling and increased cell-surface mu receptor expression in beta arr2-/- compared with beta arr2+/+ neurons. Such changes could not be explained by the classical role of beta-arrestins in agonist-induced endocytosis. The localization of the nonreceptor tyrosine kinase c-Src appeared disrupted in beta arr2-/- neurons, and there was reduced activation of c-Src by DAMGO. Using the Src inhibitor PP2 [4-amino-5-(4-chlorophenyl)-(t-butyl)pyrazolo[3,4-d]pyrimidine], we demonstrated that defective Src signaling mimics the beta arr2-/- cellular phenotype of reduced mu agonist efficacy, increased constitutive mu receptor activity, and reduced constitutive recycling. We propose that beta-arrestin2 is required to target c-Src to constitutively active mu receptors, resulting in their internalization, providing another dimension to the complex role of beta-arrestin2 and c-Src in G-protein-coupled receptor function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.