Abstract

Cardiac dysfunction after brain death decreases the already limited number of potential donors for cardiac transplantation. Acute beta-adrenergic receptor (betaAR) desensitization after the brain death-associated catecholamine surge is an important mechanism. We hypothesized that acute betaAR antagonism could improve myocardial function after brain death by preserving betaAR signaling. Pigs were randomly assigned to three study groups (n = 5): sham; brain death; and brain death with betaAR antagonist (200 microg/kg/min esmolol), 30 minutes before brain death until 45 minutes after brain death. Functional data were collected for 6 hours after brain death and tissues procured. Compared with baseline, pre-load recruitable stroke work (PRSW), a pre-load-independent measure of systolic function (21.4 +/- 7.5 vs 43.3 +/- 6.8, slope of regression line during vena caval occlusion, p < 0.001), diastolic function (Tau, 101 +/- 54.7 vs 36.4 +/- 5.4 ms, p = 0.03) and systemic oxygen delivery (151 +/- 79.7 vs 298 +/- 78.7 ml/min, p < 0.001) deteriorated in untreated animals at 6 hours after brain death. In contrast, betaAR antagonist maintained baseline systolic function (PRSW, 37.8 +/- 5.6 vs 38.2 +/- 4.7, slope of regression line during vena caval occlusion, p = 0.92), diastolic function (Tau, 32.6 +/- 5.1 vs 48.5 +/- 28.3 ms, p = 0.57) and oxygen delivery (427 +/- 116 vs 397 +/- 98.8 ml/min, p = 0.36) at 6 hours after brain death. betaAR antagonist preserved betaAR signaling, as demonstrated by similar left ventricular (LV) basal (55.4 +/- 32.8 vs 58.8 +/- 10.9 pmol/mg/min, p = 0.40) and isoproterenol-stimulated (125 +/- 70.5 vs 124 +/- 52.0 pmol/mg/min, p = 0.49) adenylate cyclase activity at 6 hours after brain death, upon comparing betaAR antagonist and sham treatment groups. Both LV basal and isoproterenol-stimulated adenyl cyclase activity were higher with betaAR antagonist (25.9 +/- 4.8 pmol/mg/min, p = 0.03) than with untreated brain death (55.6 +/- 17.3 pmol/mg/min, p = 0.02). Beta-adrenergic receptor antagonism before brain death preserves cardiac function by preventing betaAR desensitization. This therapy in potential donors might increase the number of organs available for transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.