Abstract
The Shape-Measure method for solving optimal shape design problems (OSD) in cartesian coordinates is divided into two steps. First, for a fixed shape (domain), the problem is transferred to the space of positive Radon measures and relaxed to a linear programming in which its optimal coefficients determine the optimal pair of trajectory and control. Then, a standard minimizing algorithm is used to identify the best shape. Here we deal with the best standard algorithm to identify the optimal solution for an OSD sample problem governed by an elliptic boundary control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.